Bước vào kỷ nguyên công nghệ thế kỷ 21, các thuật ngữ như Trí tuệ nhân tạo (AI), Học sâu (Deep Learning) và Học máy (Machine Learning) ngày càng phổ biến và có nhiều thành tựu đột phá trong lĩnh vực Công nghệ thông tin. Trong cuộc cách mạng này, Neural Network được ví như là “xương sống” của Deep Learning và thu hút sự quan tâm của nhiều Kỹ sư phần mềm (software engineer). Công nghệ này dùng để vận hành các sản phẩm công nghệ hiện đại như máy bay không người lái, ô tô tự lái, nhận dạng giọng nói, …
Vậy Neural Network là gì? Nó có những đặc điểm gì và được ứng dụng như thế nào vào đời sống của con người? Hãy cùng VTC Academy tìm hiểu trong bài viết này nhé!
Tóm Tắt
Neural Network là gì?
Neural Network, hay còn gọi là mạng nơ-ron nhân tạo hay mạng lưới thần kinh nhân tạo, là một mô hình toán học phức tạp được phát triển dựa theo các mạng nơ-ron sinh học. Cụ thể hơn, Neural Network được xây dựng dựa theo mô hình hoạt động của các tế bào thần kinh của con người.
Bạn đang đọc: Neural Network là gì? Ứng dụng và phân loại
Ở não người, các dây thần kinh kết nối các nút, gọi là tế bào thần kinh, lại với nhau. Còn ở Neural Network, các nút này được gọi là nơ-ron nhân tạo. Việc kết nối các điểm này lại sẽ tạo ra một hệ thống dây chằng chịt, khi đó nó được gọi là mạng nơ-ron nhân tạo.
Tương tự như hoạt động giải trí não bộ ở con người, gồm có việc đảm nhiệm thông tin, giải quyết và xử lý thông tin và hành vi, Neural Network cũng được tạo ra để triển khai những thao tác này. Tuy nhiên, mạng nơ-ron tự tạo sẽ sử dụng những thuật toán để xác lập và nghiên cứu và phân tích mối quan hệ trong tệp tài liệu mà chúng cần xử lý .
Kiến trúc mạng Neural Network
Mạng Neural Network được cấu thành từ những tầng perceptron, gồm 3 tầng chính:
- Tầng vào (input layer): Như trong hình ở dưới, tầng này nằm bên phía trái, thể hiện cho các dữ liệu đầu vào.
- Tầng ra (output layer): Ngược lại với tầng vào, tầng ra thể hiện cho đầu ra của mạng nơ-ron và nằm bên phía bên phải của hình.
- Tầng ẩn (hidden layer): Đây là tầng nằm ở giữa, thể hiện cho quá trình xử lý thông tin và suy luận của mạng. Nó sẽ nhận các thông tin đầu vào ở đầu vào và trả kết quả ở đầu ra thông qua chức năng kích hoạt.
Mạng nơ-ron nhân tạo hoạt động như thế nào?
Một mạng nơ-ron nhân tạo chứa đến hàng trăm hoặc hàng triệu nơ-ron nhân tạo được sắp xếp theo 3 lớp như trên. Chúng sẽ sử dụng các thuật toán học khác nhau để phân tích vấn đề. Khi tiếp nhận thông tin từ bên ngoài thông qua Lớp đầu vào, các dữ liệu này sẽ đi qua một hoặc nhiều Lớp ẩn để xử lý. Thông thường, đây sẽ là những dữ liệu mà con người muốn tìm hiểu hoặc giải quyết. Tại đây các con số sẽ được xử lý bằng các thuật toán và kết quả sẽ được xuất ra tại Lớp đầu ra. Mỗi khi đi qua thêm một Lớp ẩn thì dữ liệu sẽ được phân tích sâu sắc hơn và được xử lý kỹ hơn.
Cơ chế của mạng nơ-ron tự tạo là trải qua việc giải quyết và xử lý một lượng lớn thông tin, chúng hoàn toàn có thể tự học và sẽ tự đưa ra giải pháp khi được nhận nguồn tài liệu mới. Do đó, để việc học này tốt hơn, nguồn thông tin nguồn vào càng lớn càng tốt .
Đọc thêm bài viết: Trí tuệ nhân tạo cần học những gì? Ra trường làm gì?
Trong thời gian đào tạo (training set) giúp máy học, con người sẽ cung cấp các thông tin mô tả trong đời thực cho máy. Ví dụ, khi bạn dạy mạng Neural Network cách phân biệt con người với mèo, hàng nghìn hình ảnh được gắn thẻ là con người sẽ được cung cấp cho mạng để bắt đầu tìm hiểu. Khi nó đã được đào tạo với lượng số liệu đáng kể, nó có thể tự nhận diện được những đặc điểm để nhận biết một con người.
Những hình ảnh sẽ được nhập vào ở Lớp nguồn vào. Sau đó, chúng được quy đổi thành ngôn từ của mạng và được giải quyết và xử lý ở Lớp ẩn. Khi này, với sự huấn luyện và đào tạo của con người, mạng sẽ nhận định và đánh giá được một con người cần những bộ phận khung hình nào, tư thế, sắc tố, … .Khi nó nhận được một hình ảnh mới với những số liệu tương thích với những gì nó đã được huấn luyện và đào tạo thì nó sẽ xác nhận đó là một con người ở Lớp đầu ra. Ngược lại, nếu không đúng mực, sự Viral ngược sẽ được mạng sử dụng để kiểm soát và điều chỉnh lại việc học của nó như chỉnh sửa những thông số kỹ thuật hay thuật toán .
Ứng dụng của Neural Network
Hiện nay, Neural Network được ứng dụng rộng rãi trong nhiều lĩnh vực như kinh doanh, giáo dục, y tế, công nghệ thông tin, công nghệ blockchain, … Dưới đây là một số ứng dụng quen thuộc của Neural Network:
Nhận dạng chữ viết tay
Hiện nay có rất nhiều website hay ứng dụng giúp con người tạo ra chữ ký trực tuyến. Trong quy trình này, những ký tự viết tay sẽ được quy đổi thành những ký tự kỹ thuật số bởi mạng nơ-ron tự tạo .
Nén hình ảnh
Neural Network được sử dụng nhiều trong việc lưu trữ, mã hóa và tạo nén hình ảnh. Con người có thể tái tạo và tối ưu kích thước dữ liệu bằng cách sử dụng Neural Network. Việc này không những giúp chúng ta tiết kiệm bộ nhớ mà còn gửi thông tin nhanh hơn.
Xem thêm: offerings tiếng Anh là gì?
Tối ưu quãng đường di chuyển
Ứng dụng này điển hình nổi bật trong những ứng dụng map và nổi bật nhất là Google Map. Khi tất cả chúng ta tìm kiếm một khu vực đơn cử nào đó và đường đi đến đó, Google sẽ đề xuất kiến nghị 2-3 con đường cho mình chọn. Trong đó, con đường ngắn nhất và tối ưu nhất sẽ được làm điển hình nổi bật .
Dự đoán giao dịch chứng khoán
Với sự biến hóa nhanh gọn và khó hiểu của sàn thanh toán giao dịch sàn chứng khoán, Neural Network đã được tận dụng để dự báo những xê dịch trong thị trường. Tại đây, Neural Network sẽ kiểm tra và nghiên cứu và phân tích hàng loạt những yếu tố tác động ảnh hưởng đến thị trường để đưa ra những Dự kiến hàng ngày, giúp những nhà môi giới có được những quyết định hành động đúng chuẩn hơn và ít rủi ro đáng tiếc hơn .
Digital Marketing
Trong các năm đổ lại đây, việc ứng dụng trí tuệ nhân tạo trong Digital Marketing không còn quá xa lạ đối với dân kinh doanh. Việc sử dụng Deep Learning và Neural Network trong việc tiếp thị giúp mang lại trải nghiệm tốt hơn cho khách hàng và tăng doanh thu cho doanh nghiệp. Một số ví dụ điển hình như hệ thống Chatbot, xây dựng nội dung cá nhân hóa, phân tích người dùng bằng cách nhận diện hình ảnh, …
Các loại Neural Network
Trong Deep Learning, Neural Networks được chia thành 3 dạng là : Artificial Neural Network, Convolutional Neural Network và Recurrent Neural Networks. Ý nghĩa và phương pháp hoạt động giải trí của 3 thuật toán này trọn vẹn khác nhau. Hãy cùng khám phá về chúng trong phần này nhé !
Artificial Neural Network (ANN) là gì?
Artificial Neural Network là một mô hình toán học được phát triển thông qua các nơ-ron sinh học. ANN được cấu tạo bởi nhiều điểm nối, nơi các dữ liệu sẽ được xử lý và phân tích.
Thông thường, mạng lưới hệ thống ANN hoàn toàn có thể tự học trải qua việc nghiên cứu và phân tích tài liệu và tự kiểm soát và điều chỉnh cấu trúc của mình để tương thích với nguồn thông tin mới. Đây là một công cụ đắc lực tương hỗ việc quy mô hóa dữ liệu thống kê phức tạp .ANN hoàn toàn có thể được sử dụng để xử lý những yếu tố tương quan đến :
- Dữ liệu dạng bảng
- Dữ liệu hình ảnh
- Dữ liệu văn bản
Convolutional Neural Network (CNN) là gì?
Convolutional Neural Network hay còn gọi mà mạng nơ-ron tích chập. Đây là một trong những mô hình Deep Learning hiện đại, cho phép con người sử dụng nguồn thông tin với độ chính xác cực kỳ cao.
Thuật toán này thường được sử dụng trong việc nhận dạng những đối tượng người tiêu dùng trong hình ảnh .
Recurrent Neural Network (RNN) là gì?
Recurrent Neural Network, hay còn được gọi là mạng nơ-ron tuần hoàn, là mạng lưới dùng để lưu lại thông tin từ quá trình xử lý dữ liệu, từ đó mà máy có thể đưa ra những dự đoán chính xác hơn.
Chúng ta hoàn toàn có thể sử dụng RNN tuần hoàn để xử lý những yếu tố tương quan đến :
- Dữ liệu chuỗi thời gian
- Dữ liệu văn bản
- Dữ liệu âm thanh
Kết luận
Những thông tin và ví dụ ở trên có thể cho thấy Neural Network là một yếu tố quan trọng trong thế giới ngày nay. Với sự có mặt của Neural Network, cuộc sống của con người đã trở nên dễ dàng và tiện lợi hơn.
Mong rằng bài viết trên đây đã giúp bạn giải đáp những thắc mắc liên quan đến mạng nơ-ron nhân tạo và ứng dụng của chúng. Và hơn hết, đừng quên tham khảo khóa học Trí tuệ nhân tạo tại VTC Academy để được tìm hiểu sâu hơn về Deep Learning cũng như Neural Network nhé!
Source: https://final-blade.com
Category : Tiền Điện Tử – Tiền Ảo